Допустимый прогиб металлической балки -

Допустимый прогиб металлической балки



Допустимый прогиб металлической балки

ГОСТ Р 56356-2015

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

СТЕЛЛАЖИ МЕТАЛЛИЧЕСКИЕ ДЛЯ АРХИВОВ

Metal shelvings for archives. Specification

ОКС 97.140
ОКП 56 0000

Дата введения 2016-01-01

1 РАЗРАБОТАН Обществом с ограниченной ответственностью «Промет» (ООО «Промет»)

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 135 «Мебель»

4 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в ГОСТ Р 1.0-2012 (раздел 8). Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправокв ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользованияна официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

1 Область применения

1 Область применения

Настоящий стандарт распространяется на металлические стеллажи, состоящие из секций высотой не более 3100 мм и эксплуатационной нагрузкой на секцию не более 1000 кг, предназначенные для ручной обработки грузов, используемые в архивах, складах, офисных, производственных и торговых помещениях.

Настоящий стандарт устанавливает требования к металлическим стеллажам и методам их контроля.

Требования, обеспечивающие безопасность стеллажей при эксплуатации, изложены в 5.1.9-5.1.11.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ 9.032-74 Единая система защиты от коррозии и старения. Покрытия лакокрасочные. Группы, технические требования и обозначения

ГОСТ 9.301-86 Единая система защиты от коррозии и старения. Покрытия металлические и неметаллические неорганические. Общие требования

ГОСТ 9.303-84 Единая система защиты от коррозии и старения. Покрытия металлические и неметаллические неорганические. Общие требования к выбору

ГОСТ 166-89 (ИСО 3599-76) Штангенциркули. Технические условия

ГОСТ 9500-84 Динамометры образцовые переносные. Общие технические требования

ГОСТ 12971-67 Таблички прямоугольные для машин и приборов. Размеры

ГОСТ 30255-2014 Мебель, древесные и полимерные материалы. Метод определения выделения формальдегида и других вредных летучих химических веществ в климатических камерах

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

3.1 стеллаж металлический: Стеллаж с металлическими стойками и полками или балками.

3.2 стойка: Вертикальный грузонесущий элемент стеллажа.

3.3 балка: Горизонтальный грузонесущий элемент стеллажа, крепящийся к стойкам стеллажа.

3.4 полка стеллажная: Грузонесущая поверхность, применяемая совместно с балками или вместо них, металлическая или из другого материала.

3.5 секция стеллажа: Один вертикальный ряд полок ограниченный четырьмя стойками или двумя боковыми стенкам.

3.6 эксплуатационная нагрузка на полку: Допустимый общий вес всех единиц груза, размещенных на полке стеллажа.

3.7 эксплуатационная нагрузка на секцию: Допустимый общий вес всех единиц груза размещенных на полках секции стеллажа.

3.8 деформируемость стоек: Отклонение к горизонтальной поверхности.

4 Классификация

4.1 Классы стеллажей устанавливают в зависимости от величин эксплуатационной нагрузки на полку и количества полок в стеллаже и указаны в таблице 1.

Эти примеры помогут сделать расчет металлической балки без напряга

Металлические балки двутавровые

Кроме повсеместно ведущегося строительства многоэтажных зданий с большим числом квартир, широкое распространение получило сооружение частных домов, причем не только небольших одноэтажных, но и довольно крупных, с двумя и более этажами, иногда и с мансардой наверху или обитаемым чердаком. Для таких домов уже не подходит каркасный метод; материалом часто служит, вместо дерева, кирпич или железобетон. Возведение крупных частных домов должно вестись по всем правилам строительной науки, так как ошибки при проектировании или воплощении проекта могут привести к нежелательным последствиям.

Если строящийся дом представляет собой капитальное здание – из бетона, кирпича, шлакоблока, то для потолочных перекрытий, межэтажных и чердачных, целесообразно применить железобетонные плиты. Наиболее подходящий тип каркаса, способный выдержать вес таких перекрытий, – это каркас, элементом которого является металлическая балка двутаврового профиля.

Именно этот вид проката, установленный своей стенкой вертикально, обладает наибольшей несущей способностью. Естественно, фундамент и стены дома при этом должны быть достаточной прочности, чтобы выдерживать дополнительный вес от 0,5 до 1 тонны – столько металла, в зависимости от количества балок и номера профиля может понадобиться для потолочного перекрытия.

Чтобы избежать лишних затрат и лишнего веса каркаса потолка, а также не допустить обрушения или значительного прогиба балок, необходимо заранее рассчитать их параметры и по результатам расчета подобрать нужный прокат. Расчет сводится к вычислению следующих величин: требуемого момента сопротивления и минимального момента инерции сечения балки, а исходя из последнего – максимального относительного прогиба.

Расчет ведется по двум характеристикам – на прочность и на жесткость. По полученным значениям момента сопротивления и момента инерции в таблицах ГОСТ находят требуемый номер проката.

Исходные данные для расчетов

Для каркаса потолочных перекрытий малогабаритных частных домов обычно используется двутавр 10 – 20 номеров. Характеристики этих профилей приводятся в ГОСТ 8239-72 – их линейные размеры, площади сечения, максимальные моменты сопротивления по вертикали Wy и минимальные моменты инерции Jy.

Необходимо знать тип плит, которые будут опираться на балочный каркас, а также размеры несущего периметра дома. Можно применить пустотные железобетонные плиты ПК-12-10-8 (1180 х 990 мм, масса 380 кг), а размеры дома взять 4,5 х 6 м. Балки укладываются вдоль короткой стены; шаг укладки при таком размере плит равен 1000 мм (стыки плит совпадают с продольными осями балок, при минимальном зазоре 1 см). Это потребуется для расчета распределенной нагрузки, и исходя из нее – линейной нагрузки на балку, вес самой балки по сравнению с распределенной нагрузкой мал, и при вычислении линейной нагрузки им можно пренебречь.

Распределенная нагрузка при таком типе плит будет равна 325 кгс / м 2 . К этому надо добавить нагрузку возможных перегородок на верхней стороне перекрытия (75 кгс / м 2 ) и возможную временную нагрузку (200 кгс / м 2 ). В итоге нагрузка, распределенная по площади:

Q = 325 + 75 + 200 = 600 кгс / м 2 ,

а линейная нагрузка

q = Q * p = 600 кгс / м = 6 кгс / см.

Эта величина используется в дальнейших расчетах.

Расчет на прогиб

Изгибающий момент для каждой балки вычисляется, исходя из величины линейной нагрузки q, шага укладки балок p и длины перекрываемого пролета L. Так как балки укладываются вдоль короткой стороны, то L = 4,5 м = 450 см (конечно, сами балки длиннее – около 5 м, так как опираются на стены, но шарнирными опорами для них служат именно внутренние края стен).

Искомая величина момента, в таком случае:

My = (q * L 2 ) / 8 = 6 * 450 2 / 8 = 151875 кгс * см.

Максимальный момент сопротивления сечения балки можно рассчитать, разделив изгибающий момент на расчетное сопротивление стали – например, марки С235, равное 2150 кгс / см 2 :

Wy = 151875 / 2150 = 70,6 см 3 .

Это полученное значение надо сравнить с величиной момента сопротивления сечения двутавровой балки. Из таблицы ГОСТ 8239-72 видно, что вычисленный показатель примерно соответствует (с запасом) моменту сопротивления для профиля 14 (81,7 см 3) . Следовательно, этот номер проката будет удовлетворять требованиям к прочности балок.

Допустимый прогиб металлической балки

По желанию клиента компания ПРОкабель может спроектировать, рассчитать, поставить а также выполнить работы по монтажу кабельных эстакад.

Скачать каталог по кабельным эстакадам (6,04 МБ)

Скачать опросный лист для подбора эстакады (308 КБ)

Во времена развитого социализма в нашей стране кабельные эстакады проектировались, исходя из требований ПУЭ, рекомендаций по привязке к конструкциям «ГлавЭлектроМонтаж» и наличием типовых чертежей на различные их виды. Все это было оправдано, т.к. основные советские стройки были большими и быстрыми в масштабах плановой, пятилетней советской экономики. Вспомним даже строительство завода КАМАЗ в Набережных челнах, который был начат в декабре 1969 года и уже в 1976 году сошел первый автомобиль, при этом комплекс заводов КАМАЗа раскинулся на 22 квадратные мили. В 90-е все изменилось, т.к. рыночная экономика требовала от предприятий быть более компактными, с высокой автоматизацией и эффективностью производства, мобильностью по изменению производственных площадок, то есть конкурентоспособными. К концу же 2010 года большинство предприятий России уже встали на рельсы эффективных закупок через торговые площадки и такие изменения потребовали от генеральных подрядчиков и электромонтажных компаний быть более мобильными при формировании цены на свои услуги, т.е. при том же сервисе для заказчика оптимизировать время строительных и электромонтажных работ, уменьшать стоимость логистики и ускорять возведение объектов.

Кабельные эстакады находят широкое применение на различных крупных промышленных, металлургических и химических предприятиях, где территория крайне насыщенна различными коммуникациями и подземный вид прокладки кабеля затруднен, а также на предприятиях нефтегазодобывающей или перерабатывающей отрасли, перекачивающих станциях, на терминалах по хранению и перевалке нефтепродуктов. Зачастую в сложных климатических и коррозионно-агрессивных атмосферных условиях. Именно для таких компаний «ПРОкабель» разработала решение кабельных эстакад СЭММ по аналогии с самонесущими изолированными проводами, которые за счет своих технических преимуществ, простоты монтажа, универсальности в прокладке, а теперь еще и цены, буквально за несколько лет вытеснили с российского рынка неизолированные провода.

Каталог кабельных эстакад СЭММ «ПРОкабель» предназначен для главных инженеров, энергетиков крупных и средних производственных предприятий, электротехнических отделов проектных институтов, директоров и главных инженеров, энергетиков электромонтажных предприятий, а так же для всех, кто интересуется новыми решениями в возведении непроходных легких и средних кабельных эстакад.

1. Общие положения и термины. Выдержки из ПУЭ.

Кабельной эстакадой называется надземное или наземное открытое горизонтальное или наклонное протяженное кабельное сооружение. Кабельная эстакада может быть проходной или непроходной. Сооружают два вида кабельных эстакад:

• непроходная (с возможностью обслуживания со специально оборудованного автомобиля) и

• проходная — с площадками обслуживания. Оба вида эстакад предусматривают прокладку более 20 условных кабелей (согласно ПУЭ).

Кабельной галереей называется надземное или наземное закрытое полностью или частично (например, без боковых стен) горизонтальное или наклонное протяженное проходное кабельное сооружение. Сооружают три вида кабельных галерей: односторонняя — на 27 условных кабелей; двусторонняя — на 54; трехстенная — на 108 условных кабелей (рис. 1).

Кабельные эстакады и галереи применяют для прокладки силовых кабелей, идущих в одном направлении, в них прокладывают межцеховые электрические сети до 35 кВ. Под условными кабелями подразумевают силовые медные кабели сечением 3×240 мм2, поэтому при прокладке кабелей других сечений емкость сооружений может измениться. Сейчас непроходные эстакады стали использовать для прокладки кабеля с изоляцией из сшитого полиэтилена классом напряжения 110 кВ и выше, для питания подстанционных сооружений крупных промышленных предприятий.

Непроходные эстакады сооружают из железобетона или металла. Проходные эстакады и все виды галерей выполняют трех типов: железобетонные, металлические и комбинированные. Последние одновременно имеют железобетонные и металлические конструкции. Наружные кабельные эстакады и галереи должны иметь основные несущие строительные конструкции (колонны, балки) из железобетона с пределом огнестойкости не менее 0,75 ч или из стального проката с пределом огнестойкости не менее 0,25 ч. (пункт ПУЭ 2.3.113). Все металлические конструкции рассматриваемых кабельных сооружений в зависимости от среды, в которой они эксплуатируются, имеют соответствующее противокоррозионное или химически стойкое покрытие.

Наряду со специальными, предназначенными только для прокладки кабелей, эстакады бывают технологическими, на которых осуществляется совместное размещение (на разных уровнях) технологических трубопроводов и кабелей. При этом кабели прокладывают по возможности со стороны трубопроводов с негорючими веществами, а также ниже или выше трубопроводов в зависимости от плотности паров или газов в них.

Кабельные эстакады и галереи.

Рис. 1. Кабельные эстакады и галереи:

Незащищенная сталь в атмосфере, воде и почве подвержена коррозии, что может привести к ее повреж дению. Поэтому, чтобы избежать коррозионного повреждения, стальные конструкции обычно защищаются, чтобы противостоять коррозионному напряжению в течение срока действия этой конструкции.

Затем изделия промывают в холодной проточной воде.
При промывании полосы и проволоки применяют струйно-возвратный и эффективный струйный способы. Иногда для улучшения очистки промывание проводят в щеточно-моечных машинах. Предельное содержание примесей в промывной воде зависит от их свойств. Если эти примеси не образуют нерастворимых соединений с рабочим раствором, то их содержание может достигать 3—5 г/л. В противоположном случае концентрация нерастворимых соединений должна быть ниже предела растворимости.
Хорошо протравленные и промытые изделия поступают на заключительную подготовительную операцию — флюсование. Ее проводят для удаления солей и оксидов металлов с поверхности цинкуемого изделия, а также с поверхности расплавленного цинка в месте погружения изделия и, кроме того, для улучшения смачивания поверхности изделия расплавленным цинком путем снижения поверхностного натяжения расплава цинка. Летучие соединения, образующиеся при разложении флюса, способствуют механическому удалению загрязнений на зеркале ванны и создают нейтральную атмосферу в месте погружения изделий в расплав цинка.
В качестве флюса при цинковании в расплаве чаще всего используют смесь из солей хлористого аммония (NH4 C1) я хлористого цинка (ZnCl2). Основную роль в таком флюсе играет хлористый аммоний, так как он является поставщиком газообразных хлоридов, образующихся при разложении NH4CI при контакте с расплавленным цинком. Эта реакция идет в присутствии влаги, которая в большем или меньшем количестве всегда присутствует на изделиях. Влага способствует разложению хлористых солей с образованием активной соляной кислоты. Хлористый водород взаимодействует с оксидом железа, цинка и других элементов, присутствующих на поверхности
изделий и на зеркале ванны:

FeCl2 + Zn—Zn Cl2 + Fe.

Образовавшееся железо, взаимодействуя с жидким цинком, переходит в гартцинк, который осаждается на дно ванны цинкования. С увеличением количества железных солен резко увеличивается образование гартцинка. Это еще раз подтверждает необходимость хорошей промывки изделий после операций травления и декапирования.
В практике цинкования в расплаве цинка сложилось два основных процесса: «мокрый» способ цинкования и «сухой». В связи с этим и флюсовую обработку изделий выполняют двумя способами: в расплавленном флюсе или в водном растворе флюса с последующей его сушкой.
При «сухом» способе цинкования флюсовую обработку стальные изделия проходят в водном растворе флюса с последующей сушкой в специальных сушильных печах (сушилах). Основные составляющие водных растворов флюсования — хлорид цинка и хлорид аммония. Для повышения эффективности раствора флюсования в него добавляют различные поверхностно-активные вещества (например, ОП-7, ОП-10, сульфопонат). Растворы флюсования подогревают до 50—60 °С, что улучшает обработку изделий и способствует более быстрому высыханию флюса. Подогрев раствора обычно осуществляют паром, который пропускают через змеевик, уложенный на
дно ванны флюсования. В процессе заключительной стадии сушки флюса на поверхности изделий образуется равномерный высушенный слой флюса. При этом происходит подогрев изделий, что облегчает нагрев ванны оцинкования и улучшает технико-экономические показатели ее работы. Кроме того, образующаяся плотная пленка из солей предохраняет поверхность изделий от окисления до-погружения их в расплавленный цинк. Когда слой флюса достаточно высушен, исключаются всплески расплавленного цинка при погружении изделий в ванну цинкования.


Особо следует остановиться на подготовке поверхности при цинковании полосы. Общая загрязненность поверхности полосовой стали в исходном состоянии может достигать 1800 мг/м2. Количество и вид загрязнений зависят от многих факторов, главными из которых являются условия горячей прокатки, травления, холодной прокатки, материал прокатной смазки. Загрязнения на поверхности холоднокатаной стали делятся на механические (продукты износа металла — металлическая пыль) и жировые (остатки прокатной смазки). Кроме того, при травлении горячекатаной стали образуются загрязнения в виде остатков солей железа неорганических кислот, например, FeCl3 FeSO4 , Fe2 (SO4 )3. Поверхность полос, отожженных в колпаковых печах, может иметь загрязнения от термического разложения смазки и остатки металлической пыли. После отжига полос непрерывным способом на их поверхности могут быть остатки сухих компонентов от моющих растворов, чаще всего содержащих гель кремниевой кислоты. Требования к чистоте поверхности полосовой стали перед цинкованием высоки и в соответствии с ними загрязненость должна быть менее 40 мг/м2.
Современные агрегаты непрерывного горячего цинкования оснащены необходимыми средствами для подготовки поверхности полосы. В зависимости от способа горячего цинкования и конструкций агрегатов применяют разные методы подготовки поверхности полосы.
• Химическая подготовка
Подготовка поверхности полосы с применением обезжиривающих растворов проводится по схеме: химическое и (или) электрохимическое обезжиривание, промывка и сушка. В настоящее время для обезжиривания поверхности полос в агрегатах оцинкования используют, в основном, щелочные растворы и иногда органические растворители. В качестве основных компонентов водных щелочных растворов применяют гидроксиды (NaOH, КОН), карбонаты ;(Na2 CO3 , СаСОз), фосфаты (Na3 PO4 , Na2 HPO4 , Na4 P2 O7 , Na2 H2 P2 O7 , Ка5 Рз0ю), силикаты (Na2 Si03 , Na2 Si2 05 ) и др. После электрохимического обезжиривания следует двухступенчатая струйная промывка полосы. Температура воды в ваннах промывки первой ступени 60—65, второй ступени 90—95 °С. Сушку полосы производят горячим (85— 90 °С) воздухом.

Термическая подготовка поверхности полосы в агрегатах горячего цинкования, работающих по классическому способу Сендзимира идет путем окислительного нагрева до температуры 470-480 С. Образующаяся при этом тонкая окисная пленка восстанавливается при последующем отжиге в восстановительной атмосфере.

2.3.2. Грунтование ГФ-021.

Грунтовка ГФ-021 (ГОСТ 25129-82) — один из самых распространенных лакокрасочных материалов используемых в России, применя-
емых для окраски металлических, деревянных и других поверхностей. Популярность данного материала обусловлена, в первую очередь, универсальностью применения — для наружных и внутренних работ, и конечно, невысокой ценой, а так же широким выбором организаций-производителей. Данный материал можно приобрести как в промышленной таре, так и в небольших емкостях для розничной торговли.
Обеспечивая приемлемую адгезию и антикоррозионную защиту поверхности, грунт ГФ-021 рекомендуется перекрывать совместимыми эмалями, для получения комплексного покрытия. Грунтовку наносят на поверхность методом пневматического и безвоздушного распыления, распылением в электрополе, струйным обливом, окунанием, кистью. Перед применением грунтовку разбавляют до рабочей вязкости сольвентом, ксилолом, или смесью одного из указанных растворителей с уайт-спиритом (нефрас-СЧ-155/200) по ГОСТ 3134 в соотношении по массе 1:1. Для окраски изделий распылением в электрополе грунтовку разбавляют разбавителем РЭ-4В ГОСТ 18187.
Грунтовку ГФ-021, предназначенную для розничной торговли, можно разбавлять растворителями РС-2, 649,650. Грунтовку наносят кистью или краскораспылителем. Время высыхания однослойного покрытия при 20±2°C –24 часа. Окрашиваемая поверхность должна быть очищена от ржавчины, окалины, загрязнения и обезжирена, должна быть сухой.
Данное покрытие в виду своей дешевизны и механической стойкости хорошо подходит во временных сооружениях (например, калийные шахты до начала их выработки, временные эстакады для строительных площадок) срок эксплуатации которых не превышает 5 лет.
Изделия покрытые грунтом соответствуют климатическим исполнениям УХЛ3, У3. Используются для типов атмосферы I по ГОСТ 15150-69 (категория коррозионности С1-С2)

2.3.3. Порошковое покрытие.

Серийное производство порошковых красок в СССР (на Ярославском ЛКЗ) было начато только в 1975 г. Сейчас это одно из самых популярных защитных покрытий, т.к. используется во всех видах народного хозяйства, начиная от производства бытовой и автомобильной техники, заканчивая дверьми и кровельными материалами. Широким распространением порошковые краски (особенно термоотверждаемые на основе эпоксидных, полиэфирных смол и полиуретанов) обязаны, прежде всего тому, что они не содержат растворителей и на 100 % состоят из веществ, которые при отвержении превращаются в тонкослойное, практически непроницаемое для влаги, кислорода, кислот, солей и других химических веществ высокопрочное и твердое абразивостойкое покрытие со сроком службы, превышающим порой срок службы окрашенного изделия.

Образцы типовых проектов, чертежей, нормативных материалов по прокладке кабельных линий

Кабеленесущая система повышенной огнестойкости представляет собой определенный набор элементов, образующих кабельную трассу и прошедших успешные испытания

Инструкция по монтажу лотков для больших пролетов WPL WPR от ПИК-ЭНЕРГО

Читайте также: