Зарядные устройства для автомобильных аккумуляторов схемы -

Зарядные устройства для автомобильных аккумуляторов схемы

Содержание страницы



Зарядные устройства для автомобильных аккумуляторов схемы

ЗАРЯДНЫЕ УСТРОЙСТВА ДЛЯ АВТОМОБИЛЬНЫХ АККУМУЛЯТОРОВ-1

Схемы зарядных устройств для автомобильных аккумуляторов довольно распространены и каждая обладает своими достоинствами и недостатками. Большинство простейших схем зарядных устройств построено по принципу регулятора напряжения с выходным узлом, собранным на тиристорах или мощных транзисторах. Эти схемы обладают существенными недостатками — ток заряда непостоянен и зависит от достигнутого на аккумуляторе напряжения. Большое количество схем не имеет защиты от короткого замыкания выхода, что приводит к пробою выходных силовых элементов. Предлагаемая схема лишена этих недостатков, достаточно надёжна ( разработана в 1995 г. и изготовлена в количестве около 20 экземпляров, ни разу не выходивших из строя) и рассчитана на повторение радиолюбителями «среднего уровня».

Ключевой транзистор и все силовые диоды через слюдяные прокладки необходимо установить на общий радиатор с площадью не менее 200 см2. Наиболее важным звеном в схеме является дроссель Др1. Так как в процессе работы происходит намагничивание магнитопровода постоянным током — из-за насыщения индуктивность его сильно зависит от протекающего тока. С целью уменьшения влияния подмагничивания на индуктивность, предпочтительней использовать альсиферовые магнитопроводы с малой магнитной проницаемостью, насыщение которых происходит при значительно больших магнитных полях, чем у ферритов. Если используется Ш- образный или П — образный магнитопровод, в местах сопряжения половинок необходимо установить текстолитовую прокладку толщиной около 1 мм. Можно использовать магнитопроводы от импульсных трансформаторов блоков питания телевизоров или строчных трансформаторов. Очень хорошо подходят броневые сердечники больших типоразмеров и стержневые сердечники с боковыми щёчками. С худшим результатом можно использовать кольцевые ферритовые или альсиферовые магнитопроводы диаметром не менее 40 мм. и толщиной 10 мм. — если кольцо удастся разрезать и соединить половинки с фиксированным зазором — это улучшит технические характеристики. Обмотку наматывают до полного заполнения окна магнитопровода проводом ПЭВ-2 1,5 мм или в два провода ПЭВ-2 1,0 мм . При исправных элементах схема начинает работать сразу и требует только подстройки

ЗАРЯДНЫЕ УСТРОЙСТВА ДЛЯ АВТОМОБИЛЬНЫХ АККУМУЛЯТОРОВ-3

Ещё одно зарядное устройство собрано по схеме ключевого стабилизатора тока с узлом контроля достигнутого напряжения на аккумуляторе для обеспечения его отключения по окончании зарядки. При указанных элементах обеспечивается ток зарядки до 3 А, но путём подбора шунта ток можно увеличить. Для выпрямителя можно использовать любые мощные диоды на ток 10А или диодный мост, например KBPC3506, MP3508 или подобные. Т.к. в схеме используется принцип определения конца зарядки по достижению заданного уровня напряжения на аккумуляторе, ток заряда не регулируется и остаётся стабильным в течение всего цикла во избежание перезаряда. Узел контроля напряжения собран на таймере NE555N, который блокирует работу ключевого стабилизатора при достижении напряжения 14,8 В на аккумуляторе. Установка необходимого порога производится подстроечным резистором.

Эта схема прошла испытание временем , не содержит дефицитных или малораспространённых элементов, но за истекший период появилась новая доступная элементная база, позволяющая построить источники питания с более высокими характеристиками. Схемы, приведённые на следующих страницах раздела разрабатывались сравнительно недавно, используют доступные в настоящее время элементы и подходят для повторения радиолюбителями среднего уровня:

ЗАРЯДНЫЕ УСТРОЙСТВА ДЛЯ АВТОМОБИЛЬНЫХ АККУМУЛЯТОРОВ-2

Ещё одна схема зарядного устройства очень похожа на предыдущую, но отличается способом отключения при окончании зарядки. Пуск зарядного устройства производится нажатием кнопки «пуск» на лицевой панели, при этом на схему подаётся питающее напряжение, реле К1 срабатывает и обеспечивает «самоподхват». По окончании зарядки реле К1 отключается и схема полностью отключается от сети. Конечно, подобную доработку можно произвести и в ранее описанной схеме. Настройка схемы очень похожа на настройку предыдущей схемы и здесь не описывается — собственно, это вариант предыдущей схемы.

Устройство обеспечивает ток заряда до 6А, контроль тока и напряжения с помощью стрелочного индикатора, защиту от короткого замыкания и автоматическое отключение через заданное время с помощью таймера. Схема состоит из формирователя пилообразного напряжения (транзисторы VT1, VT2), компаратора DA1, усилителя сигнала с токоизмерительного шунта на операционном усилителе DA2 и выходных силовых тиристоров VD5, VD6, которые установлены на небольшие радиаторы, в качестве которых можно использовать металлический корпус устройства. Настройка схемы производится в несколько этапов: 1. Осциллографом замеряется амплитуда «пилы» на переменном резисторе R6, которая должна быть около 2В , в противном случае подбором резистора R4 её доводят до этого значения . Далее нагружают шунт R18 током 6А и подбором резисторов R15, R17 добиваются уровня напряжения на входе 3 компаратора, равному амплитуде пилообразного напряжения (2В) — после этого зарядное устройство начинает нормально регулировать выходной ток. 2. К выходу устройства последовательно с внешним образцовым амперметром подключают заряжаемый аккумулятор, регулятором тока устанавливают значение 3 . 6 А, а тумблер зарядного устройства переключают в положение «ток». Подбором резистора R14 добиваются правильных показаний тока по шкале встроенного прибора. 3. Аккумулятор подключают напрямую к выходу зарядного устройства и контролируют напряжение на нём с помощью внешнего образцового вольтметра. Подбором резистора R20 добиваются правильных показаний встроенного стрелочного прибора по шкале напряжений. На этом настройка закончена. В качестве измерительного прибора можно использовать любую доступную головку, линейную шкалу которой необходимо заранее подготовить. Шунт R18 можно изготовить из отрезка нихромовой проволоки диаметром около 2 мм и длиной около15 см. Точность установки сопротивления не играет большой роли, т.к. подбором резисторов R15, R17 устанавливается необходимая величина сигнала на выходе DA2 . При недостаточно надёжном запуске тиристоров конденсатор С6 можно удалить, а резистор R11 заменить на двухваттный , номиналом 510 Ом . 1кОм. Таймер отдельной настройки не требует, при желании его можно не изготавливать — остальная часть схемы не изменится. Основные электронные элементы собраны на печатной плате.

Зарядное устройство для автомобильных аккумуляторов своими руками

Наверное, каждый автолюбитель сталкивался с проблемой разряженного аккумулятора. Иногда аккумулятор разряжается в самых неожиданных ситуациях, например, когда водитель собирается на работу и торопится, чтобы не опоздать. В такие моменты разряженный аккумулятор может привести к не самым приятным последствиям.

Для того чтобы можно было избегать подобных ситуаций, многие автолюбители прибегают к помощи специальных устройств, которые позволяются зарядить автомобильный аккумулятор. Такие зарядные устройства можно с лёгкостью приобрести в специальных магазинах или на рынках. Ассортимент широкий, цены разные.

Но многие автолюбители хоть раз задумывались об изготовлении зарядного устройства для своих аккумуляторов своими руками. А такая возможность действительно есть. По сути, каждый пользователь может собрать такое устройство своими собственными силами, потратившись разве что на компоненты всего прибора. К тому же, используя все нужные для этого схемы и инструкции, любой автолюбитель может изготовить зарядное устройство для аккумулятора своего автомобиля своими руками, особенно если у него уже есть определённый опыт работы с электротехникой.

Простое зарядное устройство на микросхеме LM317

Для начала можно представить вариант создания зарядного устройства на микросхеме LM137, представляющей из себя линейный стабилизатор напряжениям, способный регулировать выходное напряжения. Этот вариант может называться одним из самых простых, так как само устройство такой самодельной зарядки не является сложным, что позволяет пользователю изготовить его без особых проблем.

В этом варианте устройства будут задействованы целых два стабилизатора. Делается это для того, чтобы один из этих двух стабилизаторов был подключён по схеме стабилизатора тока, в то время как на втором должен быть собран пороговый узел.

Схема

Выше представлена схема такого зарядного устройства. На ней можно заметить, что резисторы R2 и R3, с помощью которых можно выставить необходимое пользователю напряжение на выходе, заменены тут на переменный резистор. Это делается для более удобной подстройки. Заряд аккумулятора будет завершён именно в тот момент, когда напряжение на самом аккумуляторе будет равно напряжения заряда устройства.

Максимально допустимое значение заряда тока равняется 1,5 Ампер. Несмотря на кажущуюся слабость, этого значения зарядного устройства хватит для зарядки аккумуляторов. Получившимся устройством можно будет заряжать бесперебойники, аккумуляторы для мотоциклов и автомобилей. В случае последних, процесс зарядки будет весьма продолжительным, но нужно признать, что вариант такого самодельного зарядного устройства — очень даже рабочий и может, несомненно, пригодиться.

В том случае, если ток с зарядного устройства будет более 500 мА, то микросхему рекомендуется устанавливать на теплоотвод.

Мощное зарядное устройство для аккумуляторов

Выше был указан очень простой вариант самодельного зарядного устройства для автомобильного аккумулятора, слабого, но допустимого. Сейчас будет представлен вариант одного из самых мощных устройств, которое можно сделать своими руками. Ток такого устройства будет равен до 50 Ампер, а выходная мощность — 350-600 ватт в среднем.

Схема

Схема такого устройства весьма проста. За основу берётся всем известная IR253, которая будет выполнять функции задающего генератора. Она будет управлять двумя силовыми ключами. Рекомендуется задействовать мощные N-канальные полевые высоковольтные транзисторы.

Как можно заметить, схема блока являет собой полумост. Сетевое напряжение поступает на выпрямитель через сетевой фильтр. Для ограничения пускового тока используется термистор, имеющий расчётный ток 5 Ампер и сопротивление 5 Ом. Плёночные конденсаторы и дроссель выполняют роль сетевого фильтра для сглаживания помех и сетевых пульсаций.

В качестве мостового выпрямителя можно взять уже готовый мост, но в то же время можно собрать его из четырёх отдельных диодов. В обоих указанных случаях мост должен быть рассчитан на ток 6-10 и напряжение 600-1000 Вольт (рекомендуемые значения). Для этого очень удобно будет использовать готовые сборки диодов, которые уже имеются в блоках питания компьютеров.

Электролиты полумоста имеют эффективную ёмкость 330-470 мкФ и рабочее напряжение, составляющее 200-250 Вольт. В случае если мощность блока будет выше, чем допустимые значения, то следует увеличить ёмкость вышеуказанных конденсаторов, которые, кстати, также можно обнаружить в блоках питания персональных компьютеров. Там же можно найти и готовый трансформатор, который не будет нуждаться в перемотке.

Силовые транзисторы могут быть установлены либо на общий теплоотвод, либо на отдельные. Кстати, в том случае, если пользователь решит подключить силовые транзисторы на теплоотвод общий, то придётся предварительно изолировать его ключи, для того чтобы избежать вероятность возникновения короткого замыкания.

Во время сборки микросхему рекомендуется устанавливать на специальную платформу. Это делается для лёгкой замены микросхем в том случае, если она неожиданно выйдет из строя. На устройство не будут оказывать влияние перепады напряжения в сети, что гарантирует его стабильную работу без каких-либо сбоев и шумов.

Следует запомнить тот момент, что в холостом режиме транзисторы должны быть холодными, даже ледяными. В противном случае это может означать ошибку в монтаже или какой-то компонент сборки не работает.

В качестве диодного выпрямителя на выходе прибора рекомендуется задействовать быстрые, импульсные или ультрабыстрые диоды с большим током (это 30 Ампер), также можно использовать диодные сборки шоттки, работающие на большой мощности. В случае этого устройства лучше не применять обычные выпрямители на 50 Гц, так как на выходе схемы имеется напряжение высокой частоты.

  • Внимание нужно заострить на том, что данный блок не оснащён защитой от возможных коротких замыканий, поэтому не следует замыкать провода на выходе, так как в противном случае схема может дать сбой и выйти из строя.

Вся схема довольно компактна и легка, что может обрадовать не самых опытных пользователей, не имеющих определённых навыков и большого опыта в этом деле. Имеющая схема сможет помочь в этом деле.

Импульсное зарядное устройство для аккумуляторов

Можно рассмотреть вариант с изготовлением импульсного зарядного устройства. Принцип создания такого устройства заключается в том, что следует просто заменить трансформаторный блок питания на импульсный. Это довольно компактное и лёгкое зарядное устройство, которое будет подробно рассмотрено ниже. Импульсный источник питания изготавливается посредством применения микросхемы IR2153.

Эта схема отличается от других своих аналогов тем, что в данном случае вместо двух конденсаторов, которые подключены со средней точкой, после диодного моста применяется всего один электролит.

Схема

Этот вариант зарядного устройства рассчитан на сравнительно небольшую мощность, что в принципе можно исправить, если заменить некоторые компоненты на более мощные. В результате можно создать более мощное устройство.

В данной схеме могут быть использованы ключи серии 8N50. Эти ключи оснащены изолированным корпусом, так что в случае применения общего теплоотвода, можно не беспокоиться о слюдяных прокладках, так как их можно вообще не использовать.

Диодные мосты, опять же, можно взять от блоков питания от обычных персональных компьютеров, а можно собрать его их четверых выпрямительных диодов.

После можно упомянуть цепочку питания микросхемы. Питание можно взять с переменки, резистор для гашения тока на 18 кОм. После резистора находится простой выпрямитель на одном-единственном диоде и питание поступает сразу на микросхему.На питании также стоит электролит с параллельно подключённым керамическим или плёночным конденсатором, что делается для наилучшего сглаживания помех и пульсаций.

  • Кстати, и силовой трансформатор можно взять также из компьютерного блока питания. Он как раз превосходно подходит для таких целей, так как обеспечивает приличный ток на выходе и обеспечивает сразу несколько выходных напряжений.

Выходные выпрямительные диоды обязательно должны быть импульсными, так как обычные не смогут работать из-за повышенной частоты. Сетевой фильтр можно и не ставить, хотя пару ёмкостей и дроссель, представляющих собой фильтр, желательны к установке. Для снижения бросков на входе до фильтра можно использовать термистор Ом на 5, легко вытащить из компьютерного блока питания.

Электролитический конденсатор подбирается с учётом специального отношения 1 Ватт — 1 мкФ. Напряжение такого конденсатора должно быть равно 400 вольт.

Это довольно несложная схема, которая может быть выполнена даже пользователем, не обладающим опытом. К тому же при наличии необходимых схем и советов к созданию такого устройства, можно справиться без особых проблем.

Зарядные устройства для автомобильных аккумуляторов схемы

Ниже предлагается вариант зарядного устройства, автоматически отключающего схему зарядки от аккумулятора по окончании процесса.

Принципиальная схема автоматического устройства для зарядки автомобильных аккумуляторов.

Схема автоматического зарядного устройства для зарядки автомобильных аккумуляторов состоит из регулятора зарядного тока на симисторе VS1 со схемой управления на однопереходном транзисторе VT1 и схемы контроля заряда и автоматического отключения аккумулятора.

Схема регулятора зарядного тока позволяет изменять ток заряда в пределах 0 ÷ 10 А (верхний предел зависит от параметров трансформатора Т1). Использована классическая схема с фазовым управлением, симистора.

Схема контроля и автоматического выключения зарядного устройства работает следующим образом. В начале процесса зарядки тиристор VS2 открыт током, протекающим через R7. По мере заряда аккумулятора напряжение на нем возрастает. Когда оно достигает величины 14,2÷14,3 В, стабилитрон VD5 начинает пропускать ток.

Открывается транзистор VT2, который забирает часть тока, поступающего на управляющий электрод тиристора VS2, в результате он запирается и процесс зарядки аккумулятора заканчивается.

Настройка схемы регулятора зарядного тока заключается в подборе резистора R2 с таким расчётом, чтобы при нулевом сопротивлении потенциометра R1 зарядный ток был максимальным.

Порядок настройки схемы автоматического выключателя следующий. Подключают зарядное устройство к сети, подключают к его выходу полностью заряженный аккумулятор (напряжение на его клеммах должно быть в пределах 14,2÷14,5 В) и с помощью потенциометра R11 добиваются открытия транзистора VT2 (на его коллекторе должно быть потенциал 0,6÷1 В) и закрытия тиристора VS2. На этом настройку зарядного устройства можно считать законченной.

Вариант замены однопереходного транзистора VT1 представлен на рисунке ниже .

Замена однопереходных транзисторов.

Заменить однопереходные транзисторы серии КТ 117, можно двумя биполярными транзисторами включёнными по схеме показанной на рис. 2.108.

Схема аналога однопереходного транзистора (на практике применяются и другие схемы аналога, с незначительными изменениями).

Схема аналога однопереходного транзистора (вариант 2).

Цоколёвка транзистора KTII7: а — в старом корпусе; б — в новом металлическом корпусе; в — в новом пластмассовом корпусе.

Зарядные устройства для автомобильных аккумуляторов схемы

Схема и описание простого самодельного зарядного устройства на тиристоре для зарядки автомобильных аккумуляторов.

Устройство с электронным управлением зарядным током, выполнено на основе тиристорного фазоимпульсного регулятора мощности. Оно не содержит дефицитных деталей, при заведомо исправных элементах не требует налаживания.

Это зарядное устройство на тиристоре позволяет заряжать автомобильные аккумуляторные батареи током от 0 до 10 А, а также может служить регулируемым источником питания для мощного низковольтного паяльника, вулканизатора, переносной лампы.

Зарядный ток по форме близок к импульсному, который, как считается, способствует продлению срока службы батареи. Устройство работоспособно при температуре окружающей среды от — 35 °С до + 35°С. Схема устройства показана на рис. 1.

Нажмите на картинку для просмотра.

Зарядное устройство представляет собой тиристорный регулятор мощности с фазоимпульсным управлением, питаемый от обмотки II понижающего трансформатора Т1 через диодный мостVD1 + VD4.

Узел управления тиристором выполнен на аналоге однопереходного транзистора VT1, VT2 Время, в течение которого конденсатор С2 заряжается до переключения однопереходного транзистора, можно регулировать переменным резистором R1. При крайнем правом по схеме положении его движка зарядный ток будет максимальным, и наоборот.

Диод VD5 защищает управляющую цепь тиристора VS1 от обратного напряжения, возникающего при включении тиристора.

Тиристорное зарядное устройство в дальнейшем можно дополнить различными автоматическими узлами (отключение по окончании зарядки, поддержание нормального напряжения батареи при длительном ее хранении, сигнализации о правильной полярности подключения батареи, защита от замыканий выхода и т. д.).

К недостаткам устройства можно отнести колебания зарядного тока при нестабильном напряжении электроосветительной сети.

Как и все подобные тиристорные фазоимпульсные регуляторы, устройство создает помехи радиоприему. Для борьбы с ними следует предусмотреть сетевой LC-фильтр, аналогичный применяемому в импульсных сетевых блоках питания.

Конденсатор С2 — К73-11, емкостью от0,47 до 1 мкФ, или. К73-16, К73-17, К42У-2, МБГП.

Транзистор КТ361А заменим на КТ361Б — КТ361Ё, КТ3107Л, КТ502В, КТ502Г, КТ501Ж — KT50IK, а КТ315Л — на КТ315Б + КТ315Д КТ312Б, КТ3102Л, КТ503В + КТ503Г, П307 Вместо КД105Б подойдут диоды КД105В, КД105Г или. Д226 с любым буквенным индексом.

Переменный резистор R1 — СП-1, СПЗ-30а или СПО-1.

Амперметр РА1 — любой постоянного тока со шкалой на 10 А. Его можно изготовить самостоятельно из любого миллиамперметра, подобрав шунт по образцовому амперметру.

Предохранитель F1 — плавкий, но удобно использовать и сетевой автомат на 10 А или автомобильный биметаллический на такой же ток.

Диоды VD1 + VP4 могут быть любыми на прямой ток 10 А и обратное напряжение не менее 50 В (серии Д242, Д243, Д245, КД203, КД210, КД213).

Диоды выпрямителя и тиристор устанавливают на теплоотводы, каждый полезной площадью около 100 см 2 . Для улучшения теплового контакта приборов с теплоотводами желательно использовать теплопроводные пасты.

Вместо тиристора. КУ202В подойдут КУ202Г — КУ202Е; проверено на практике, что устройство нормально работает и с более мощными тиристорами Т-160, Т-250.

Следует заметить, что в качестве теплоотвода тиристора допустимо использовать непосредственно металлическую стенку кожуха. Тогда, правда, на корпусе будет минусовой вывод устройства, что в общем-то нежелательно из-за опасности случайных замыканий выходного плюсового провода на корпус. Если крепить тиристор через слюдяную прокладку, опасности замыкания не будет, но ухудшится отдача тепла от него.

В устройстве может быть использован готовый сетевой понижающий трансформатор необходимой мощности с напряжением вторичной обмотки от 18 до 22 В.

Если у трансформатора напряжение на вторичной обмотке более 18 В, резистор R5 следует заменить другим, большего сопротивления (например, при 24. 26 В сопротивление резистора следует увеличить до 200 Ом).

В случае, когда вторичная обмотка трансформатора имеет отвод от середины, или есть две одинаковые обмотки и напряжение каждой находится в указанных пределах, то выпрямитель лучше выполнить по стандартной двуполупериодной схеме на двух диодах.

При напряжении вторичной обмотки 28. 36 В можно вообще отказаться от выпрямителя — его роль будет одновременно играть тиристор VS1 (выпрямление — однополупериодное). Для такого варианта блока питания необходимо между резистором R5 и плюсовым проводом включить разделительный диод КД105Б или Д226 с любым буквенным индексом (катодом к резистору R5). Выбор тиристора в такой схеме будет ограничен — подойдут только те, которые допускают работу под обратным напряжением (например, КУ202Е).

Для описанного устройства подойдет унифицированный трансформатор ТН-61. Три его вторичных обмотки нужно соединить согласно последовательно, при этом они способны отдать ток до 8 А.

Все детали устройства, кроме трансформатора Т1, диодов VD1 — VD4 выпрямителя, переменного резистора R1, предохранителя FU1 и тиристора VS1, смонтированы на печатной плате из фольгированного стеклотекстолита толщиной 1,5 мм.

Зарядные устройства импульсные своими руками: схемы, инструкция, отзывы

Порой аккумулятор в автомобиле разряжается очень быстро. В итоге приходится использовать различные приборы для того, чтобы завести машину. На сегодняшний день большой популярностью пользуются именно импульсные зарядные устройства. Основными их производителями принято считать компании «Сонар» и «Бош».

Однако некоторые люди не могут себе позволить купить указанные приборы, поскольку они дорого стоят. В такой ситуации можно попробовать самостоятельно собрать модель. Для того чтобы разобраться в импульсных зарядках, необходимо взглянуть на стандартную схему устройства.

Схема обычной зарядной модели

Схемы импульсных зарядных устройств для автомобильных аккумуляторов включают в себя трансформатор с магнитопроводом, а также транзисторы. Для настройки напряжения используются регуляторы, которые подсоединены к модуляторам. Также схема импульсного зарядного устройства включает в себя специальные триггеры. Основной их задачей является повышение стабильности напряжения. Для подключения прибора на зарядке имеются зажимы. Непосредственно само электричество подается через кабель.

Устройство на 6 В: схема и инструкция

Сделать на 6 В импульсное зарядное устройство своими руками довольно просто. С этой целью для трансформатора сооружается небольшая платформа. Также необходимо заранее заготовить изоляторы. Непосредственно трансформатор часто применяют силового типа. Проводимость тока у него в среднем равняется 6 мк. Еще важно отметить, что система способна справляться с повышенным отрицательным сопротивлением. Осцилляторы используются импульсного типа.

Для нормальной работы прибора также потребуется линейный тетрод. Подбирать его следует с обкладкой. Некоторые эксперты настоятельно советуют использовать фильтры. Таким образом, можно стабилизировать напряжение, когда перегрузки в сети превышают отметку в 20 В. По эксплуатации инструкция импульсного зарядного устройства очень простая. Для подключения устройства потребуются зажимы. При этом вилку следует воткнуть в розетку.

Как сделать зарядное на 10 В?

Схемы импульсных зарядных устройств для автомобильных аккумуляторов включают в себя понижающие трансформаторы. Начинать сборку модели следует с поиска качественного трансформатора. В данном случае потребуется мощный магнитопровод. Еще в схемы импульсных зарядных устройств для аккумуляторов входят изоляторы. Многие эксперты устанавливают регуляторы с модуляторами. Таким образом, показатель входного напряжения можно уменьшать или увеличивать. В данном случае многое зависит от мощности автомобильного аккумулятора.

Непосредственно тетроды применяются только с обкладками. Резисторы используются расширительного типа. У некоторых модификаций встречаются триггеры. Данные элементы позволяют справляться с коротковолновыми помехами, которые возникают в сети с переменным током при резком повышении уровня тактовой частоты.

Отзывы о моделях на 12 В

Импульсные зарядные устройства для аккумуляторов на 12 В в наше время пользуются большим спросом. Если верить отзывам экспертов, то для сборки модели используются понижающие трансформаторы. Осциллятор в данном случае потребуется с высокой проводимостью тока. Также важно отметить, что для моделей подходят только подстроечные триггеры.

Тетроды, в свою очередь, используются линейного типа. Параметр допустимой перегрузки в устройствах не превышает 15 Вт. Показатель номинального ток составляет в среднем 4 А. Магнитопроводы у моделей устанавливаются за трансформаторами. Специально для них необходимо подобрать качественные изоляторы. Для подключения зарядного прибора понадобятся зажимы. Если верить экспертам, то следует учесть, что самостоятельно их изготовить будет достаточно сложно.

Однофазные модификации

Сделать однофазное импульсное зарядное устройство своими руками можно на базе понижающего трансформатора. Для их сборки также используются регуляторы. Модуляторы в данном случае подойдут только коммутируемого типа. Непосредственно триггеры устанавливаются с изоляторами. Некоторые эксперты рекомендуют также использовать резиновые подкладки.

Тетроды подбираются с высокой пропускной способностью. Регуляторы устанавливаются над модулятором. Резисторов в данном случае потребуется три. Номинальное напряжение они обязаны выдерживать на отметке в 10 В. Для подключения приора понадобятся металлические фиксаторы.

Двухфазные устройства

Двухфазное автоматическое импульсное зарядное устройство собирается довольно просто. Однако в этой ситуации не обойтись без силового трансформатора. Также для сборки используются только расширительные резисторы. Показатель входного напряжения в сети, как правило, не превышает 12 В. Тиристоры для моделей используются с изоляторами. Непосредственно модулятор устанавливается на подкладку. Регулятор в данном случае подойдет поворотного типа. Для преодоления помех применяются магнитопроводы. Подключаются устройства данного типа через провод. От сети 220 В они работать тоже могут. Для подсоединения к аккумуляторам необходимы зажимы.

Отзывы о трехфазной модификации

Трехфазное импульсное зарядное устройство отзывы от экспертов имеет хорошие. Преимущество моделей заключается в том, что они способны выдерживать больше перегрузки. Магнитопроводы в данном случае устанавливаются с проводимостью на уровне 6 мк. Для стабилизации выходного напряжения применяются линейные резисторы. В некоторых случаях устанавливаются и кодовые аналоги. Однако срок службы у них не большой.

Также важно отметить, что предельное напряжение в устройствах следует регулировать при помощи модуляторов. Устанавливаются они сразу за трансформаторами. Для преодоления магнитных помех применяются подстроечные триггеры. Многие эксперты для сборки зарядных устройств рекомендуют устанавливать фильтры. Указанные элементы помогут значительно уменьшить параметр отрицательного сопротивления в цепи.

Применение импульсного трансформатора РР20

Автомобильные зарядные устройства (импульсные) с данными трансформаторами встречаются часто. В первую очередь следует отметить, что показатель номинального напряжения у них не превышает 10 В. Параметр рабочего тока равняется в среднем 3 А. Осцилляторы для сборки устройства часто используются с не большой проводимостью.

Магнитопроводы в данном случае устанавливаются на подкладках. Расширительные резисторы используются часто. Для регулировки номинального напряжения стандартно применяют модуляторы. У некоторых модификаций используются триггерные блоки. Для нормальной работы системы также не обойтись без линейных тетродов. Зажимы для прибора целесообразнее покупать отдельно. Сделать их самостоятельно очень сложно.

Использование трансформаторов РР22

Зарядные устройства (импульсные) с этими трансформаторами являются довольно распространенными. Для того чтобы самостоятельно собрать модификацию, потребуется найти качественный осциллятор. Также трансформатор будет работать только с магнитопроводом на 3 мк. В данном случае больше всего подходят резисторы расширительного типа. Однако в первую очередь важно заняться установкой регулятора. С этой целью нужно использовать коммутируемый модулятор, который устанавливается на подкладке.

Далее важно заняться полупроводниковым транзистором. Для того чтобы избежать коротких замыканий, многие эксперты рекомендуют использовать стабилизаторы. На рынке представлено множество однополюсных модификаций. В данном случае номинальное напряжение будет находиться в районе 5 В. Показатель рабочего тока составляет примерно 4 А.

Зарядное оборудование с трансформатором РР30

Для того чтобы собрать зарядные устройства (импульсные) с указанными трансформаторами, потребуется мощный магнитопровод. При этом осциллятор целесообразнее применять на 2 мк. Параметр отрицательного сопротивления в цепи обязан быть выше 3 Ом. Устанавливается магнитопровод рядом с трансформатором. Для подсоединения модулятора потребуется два контакта. Также важно отметить, что регуляторы целесообразнее использовать поворотного типа.

Многие эксперты рекомендуют резисторы устанавливать на обкладке. Все это позволит значительно сократить случаи коротких замыканий. Для стабилизации напряжения стандартно применяются фильтры. Триггерные блоки с данными трансфокаторами чаще всего используются подстроечного типа. Однако в наше время их найти сложно. Чаще всего попадаются именно оперативные аналоги. Номинальное напряжение в цепи они способны выдерживать в 15 В.

Применение разделительных трансформаторов

Разделительные трансформаторы очень редко встречаются. Основная их проблема кроется в малой проводимости тока. Также важно отметить, что они способны работать только на кодовых резисторах, которые дорого стоят в магазине. Однако преимущества у моделей есть. В первую очередь это касается повышенного номинального напряжения в цепи. Таким образом, зарядка автомобильного аккумулятора много времени не отнимет.

Также нужно отметить, что эти трансформаторы являются компактными, и в машине не займут много места. Тиристоры в данном случае применяются лишь волнового типа. Устанавливаются они чаще всего на обкладках. Для припайки модулятора применяется изолятор. Транзисторы многие эксперты настоятельно рекомендуют использовать полупроводникового типа. В магазине они представлены с различной проводимостью. В итоге параметр отрицательного сопротивления в цепи не должен превышать 8 Ом. Для подсоединения прибора к автомобильным аккумуляторам используются зажимы.

Модель с трансформатором КУ2

Трансформаторы данной серии имеют большие габариты и способны работать лишь с магнитопроводами на 4 мк. Все это говорит о том, что для нормальной эксплуатации прибора потребуются триггеры. При помощи данных устройств получится стабилизировать выходное напряжение. Также возле трансформаторов потребуется установить два фильтра. Некоторые эксперты настоятельно рекомендуют использовать стабилитроны. Однако данные устройства способны работать только при не больших перегрузках в сети.

Резисторы в данном случае можно смело применять расширительного типа. Для регулировки выходного напряжения используются коммутируемые модуляторы. Непосредственно регуляторы устанавливать следует через дроссель. Если верить отзывам экспертов, то трансформатор для безопасного использования следует располагать на подкладке. В данном случае потребуются два изолятора. Транзистора чаще всего применяются полупроводникового типа.

Зарядное оборудование с трансформатором КУ5

Зарядные устройства (импульсные) с указанными трансформаторами не пользуются большим спросом. В первую очередь это вызвано низким выходным напряжением. Таким образом, зарядка автомобильного аккумулятора занимает много времени. Однако если использовать мощный осциллятор, то ситуацию можно немного поправить. Также многие эксперты рекомендуют устанавливать расширительные резисторы.

В данном случае модулятор подойдет только коммутируемого типа. У некоторых моделей встречаются однополюсные стабилитроны. Однако в этой ситуации трансформатор может не выдержать чрезмерной нагрузки. Триггер часто применятся подстроечного типа. Для борьбы с коротковолновыми помехами не обойтись без фильтров. Чтобы подсоединить устройство к автомобильному аккумулятору используют зажимы.

Модель со сдвоенным дросселем

Зарядные устройства (импульсные) с двоенными дросселями позволяют использовать более двух модуляторов. Таким образом, можно устанавливать цифровые регуляторы напряжения. В данном случае трансформаторы чаще всего подбираются понижающего типа. Непосредственно осцилляторы используют на 3 мк. Резисторы многие эксперты рекомендуют устанавливать расширительного типа. В свою очередь кодовые аналоги не смогут долго прослужить. Тиристорные блоки применяются как волнового, так и оперативного типа.

Подведение итогов

Учитывая все вышесказанное, следует отметить, что наиболее востребованными считают трехфазные модификации. Для того чтобы их собрать, необходимо уметь пользоваться паяльной лампой. Детали для устройства нужно приобретать в специализированных магазинах. Также следует помнить о технике безопасности при подключении прибора к сети.

Читайте также:

x