Блок питания 12 вольт с регулировкой напряжения -

Блок питания 12 вольт с регулировкой напряжения



Блок питания с регулировкой напряжения: технические характеристики

Начинающие радиолюбители часто изготавливают блоки питания с регулировкой напряжения. Это очень нужный прибор, так как без него не сможет работать аппаратура. Но нужно учитывать, что для работы техники может потребоваться разное напряжение – от 1,5 до 30 В. И не хочется каждый раз делать новый блок питания, мотать трансформаторы. Ведь намного проще сделать один, но универсальный, который можно использовать в любой самоделке.

Блок питания персонального компьютера

В том случае, если у вас имеется блок питания от настольного ПК, можно воспользоваться ним. Для этого нужно выполнить такие манипуляции:

  1. Снимите верхнюю крышку.
  2. Далее, используя паяльник, уберите все лишние провода. Нужно оставить по 1-2 провода каждого цвета.
  3. Соедините зеленый провод (он в жгуте один такой) с черным (корпусом). Можно просто установить перемычку на плате.
  4. Чтобы сделать блок питания с регулировкой напряжения своими руками, необходимо провести замеры на каждом выводе.
  5. Подключите провода к соответствующим гнездам или к переключателю.

Такой блок питания позволяет получить несколько напряжений – 3, 3В, 5В, 12В. Этого вполне достаточно для полноценной работы большинства приборов. Даже для зарядки мобильных телефонов можно использовать такой блок.

Самый простой способ

Проще всего окажется сделать блок питания со ступенчатой регулировкой напряжения на выходе. Наверняка вы не раз видели такие. На них имеется переключатель на несколько положений, каждое из которых соответствует определенному значению напряжения. Надежно ли это? В качестве лабораторного блока питания с регулировкой напряжения такое устройство может работать недолго.

Причина – очень маленький ток на выходе, и подключить мощную нагрузку вряд ли получится. Даже погонный метр светодиодной ленты будет светиться с малой яркостью. Чтобы не использовать в самоделках большие тумблеры или переключатели, можно на передней панели прибора установить несколько гнезд. В них будут вставляться штекеры. Главное, правильно подписать все гнезда, чтобы не сжечь аппаратуру.

Как сделать трансформатор

Чтобы создать такой блок, потребуется самостоятельно изготовить трансформатор – перемотать вторичную обмотку. И обязательно сделайте расчет напряжения на один виток. Для этого можно поступить следующим образом:

  1. Полностью снимаете вторичную обмотку, если она имеется.
  2. Наматываете 10 витков провода и собираете магнитопровод трансформатора.
  3. Включаете трансформатор в сеть и проводите замер напряжения на вторичной обмотке.

Например, вы выяснили, что с 10 витков можно снять 1 В. Следовательно, вам потребуется намотать для напряжения на выходе в 30 В ровно 300 витков. А что если вам нужно несколько значений напряжений? Для этого сделайте отводы от соответствующих витков.

Выпрямитель

Выпрямитель – это часть блока питания, которая позволяет преобразовать переменное напряжение в постоянное. Изготавливается он из полупроводниковых диодов. Существует несколько типов схем включения:

  1. Однополупериодная – применяется всего один полупроводник. Очень низкая эффективность. Схема может использоваться для питания аппаратуры непродолжительное время. Кроме того, у конструкций такого типа высокий уровень помех.
  2. Двухполупериодная – применяется два диода. Эффективность немного выше, нежели у предыдущей, но далека от идеала.
  3. Удвоение напряжения – состоит их конденсаторов и диодов. Позволяет увеличить напряжение, но сила тока при этом уменьшается.
  4. Мостовая – содержит в себе четыре полупроводника. Эффективность у схемы очень высокая, поэтому она используется почти во всех приборах.

Нужно отметить, что существуют различные мостовые сборки. Не нужно сверяться со схемой и соединять диоды – достаточно на прибор подать переменное напряжение, а с него снять постоянное.

Блок фильтров и стабилизации

Именно так можно назвать часть схемы, в которой устанавливаются электролитические конденсаторы, резисторы и дроссели. Последние позволяют избавиться от возможного появления токов высокой частоты. Конденсатор необходим для того, чтобы убрать в постоянном токе переменную составляющую. Если вы изготавливаете лабораторный блок питания с регулировкой напряжения и тока, то нужно позаботиться о том, чтобы на выходе все параметры были стабильны. Как это сделать?

Для этого применяются стабилитроны – это устройства, которые выравнивают значение напряжения. Причем существуют приборы полупроводниковые и вакуумные. В любом случае при превышении напряжения излишки его преобразуются в тепло. Поэтому необходимо обеспечивать хорошее охлаждение прибора. Можно даже установить вентилятор для охлаждения. Для того чтобы конденсатор после отключения быстрее разряжался, на выходе устанавливается постоянный резистор.

Блок регулировки напряжения

Изготовить такое устройство можно на транзисторах или специальных сборках. Очень часто в радиолюбительской практике используются изделия типа LM317T. Для того чтобы сделать устройство на его основе, нужно иметь следующие детали:

  1. Непосредственно сборку LM317T.
  2. Диодный мост (или 4 одинаковых диода).
  3. Два электролитических конденсатора – 1000 и 100 мкФ. Напряжение не менее 50 В.
  4. Постоянное сопротивление 200 Ом.
  5. Переменный резистор 6,8 кОм.

Переменный резистор предназначен для корректировки выходного напряжения. Если у вас имеются цифровые приборы – вольтметр и амперметр, то можно установить их на выходе блока питания. Учтите, что последний включается в разрыв провода (например, плюсового). А вольтметр соединяется с плюсом и минусом. После окончательной сборки можно не делать градуировку на передней панели.

Трансформатор для конструкции можно позаимствовать от любой бытовой техники. Желательно, чтобы мощность у него была достаточной. Неплохие результаты показывает трансформатор ТВК или ТВЗ (выходной кадровой развертки и звука ламповых телевизоров соответственно). Первичная обмотка у них рассчитана на подключение к бытовой сети 220 В. Вполне возможно, что вторичную придется перемотать. Желательно использовать провод с максимальным сечением. Это позволит выдать больший ток, как следствие – получится подключить без особых проблем любую аппаратуру.

Мощный регулируемый блок питания 0-28 вольт

Можно довольно легко сделать источник питания, который имеет стабильное напряжение на выходе и регулировку от 0 до 28В. Основа — дешёвая распространённая LM317, усиленная с помощью двух транзисторов 2N3055. В таком схемном включении она становится более чем в 2 раза мощнее. Вы можете при необходимости использовать эту конструкцию для получения и 20 ампер (почти без переделок, но с соответствующим трансформатором и огромным радиатором с вентилятором), просто в своём проекте не нуждался в таком большом токе. Ещё раз напоминаю: убедитесь, что вы установили транзисторы на большой радиатор, 2N3055 могут очень сильно нагреваться при полной нагрузке.

Мощный регулируемый блок питания 0-28 вольт — схема

Список использованных в схеме деталей:

Трансформатор 2 x 15 вольт 10 ампер

D1. D4 = четыре MR750 (MR7510) диода или 2 x 4 1N5401 (1N5408).

R3,R4 0.1 Ом 10 ватт

C2 two times 4700uF/50v

D5 1N4148, 1N4448, 1N4151

D7, D8, D9 1N4001

Два транзистора 2N3055

P2 47 или 220 Ом 1 ватт

P3 10k подстроечник

Хотя LM317 и имеет защиту от короткого замыкания, перегрузки и перегрева, предохранители в цепи сети трансформатора и предохранитель F2 на выходе не помешают. Выпрямленное напряжение: 30 х 1.41 = 42.30 вольт, измеренное на С1. Так что все конденсаторы должны быть рассчитаны на 50 вольт. Внимание: 42 вольт-это напряжение, что может быть на выходе, если один из транзисторов будет пробит!

Регулятор P1 позволяет изменять выходное напряжение на любое значение между 0 и 28 вольт. Так как в LM317 минимальное напряжение 1,2 вольта, то чтобы получить нулевое напряжение на выходе БП — поставим 3 диода, D7,D8 и D9 на выходе LM317 к базе 2N3055 транзисторов. У микросхемы LM317 максимальное выходное напряжение — 30 вольт, но с использованием диодов D7, D8 и D9 произойдёт наоборот падение выходного напряжения, и оно составит около 30 — (3х0,6В) = 28.2 вольта. Калибровать встроенный вольтметр нужно с помощью подстроечника P3 и, конечно, хорошего цифрового вольтметра.

Блок питания с регулировкой напряжения и тока

Друзья, сегодня хочу рассказать вам о своей новой самоделке, это блок питания с регулировкой напряжения и тока о котором мечтают все без исключения начинающие и опытные радиолюбители. Устройство можно использовать, как в качестве лабораторного блока для питания различных самоделок, так и в качестве зарядного устройства для зарядки автомобильных аккумуляторов. Блок питания имеет стабилизированный регулятор напряжения и систему ограничения силы тока, защиту от переполюсовки клейм аккумулятора со световой индикацией, а также автоматический регулятор скорости вентилятора, изменяющий обороты в зависимости от нагрева радиатора. На этом рисунке изображена схема блока питания с регулировкой напряжения и тока рассчитанная на ток до 10А. К этой схеме можно подключать любой трансформатор или импульсный источник питания от 12 до 30В. Для тех кто любит по мощнее, в этой статье вы также найдете схему рассчитанную на ток до 25А. Не буду торопить события. Внимательно читайте статью до конца.

Схема блока питания с регулировкой напряжения и тока 1.2…30В 10А

Регулируемый стабилизатор напряжения LM317 позволяет плавно регулировать напряжение в диапазоне от 1.2 до 30В. Регулировка напряжения выполняется переменным резистором Р1. Транзистор Т1 MJE13009 выполняет роль ключа пропускающего через себя большой ток.

Система ограничения силы тока выполнена на полевом транзисторе Т2 IRFP260, позволяет ограничивать ток от 0 до 10А, управление током осуществляется переменным резистором Р2, что позволяет использовать данный блок питания в качестве зарядного устройства для зарядки автомобильных аккумуляторов. Обратите внимание на то, что резистор R6 состоит из четырех параллельно соединенных керамических резисторов 1 Ом 10Вт. Конечно можно было поставить всего один резистор на 1 Ом 40Вт. Только где такой найти? Да и цена у него будет космическая.

В схеме имеется встроенная защита от переполюсовки. При правильном подключении блока питания к аккумулятору загорается зеленый светодиод Led1. В случае не правильного подключения загорается красный светодиод Led2, сигнализирующий о ошибке подключения. Система корректно работает только при выключенном питании блока питания. То есть сначала подключаем аккумулятор, когда загорится зеленый светодиод включаем блок питания в сеть.

Автоматический регулятор оборотов вентилятора предназначен для уменьшения уровня шума возникающего в процессе работы блока питания. Стабилизатор напряжения L7812CV поддерживает постоянное напряжение 12В поступающее на делитель состоящий из терморезистора R8 установленного на радиаторе и подстроечного резистора Р3. Напряжение с делителя поступает на базу транзистора Т3. В процессе работы блока питания от большой нагрузки радиатор нагревается, сопротивление терморезистора R8 установленного в радиаторе становится меньше сопротивления подстроечного резистора Р3, напряжение на базе транзистора увеличивается и транзистор приоткрывается, тем самым увеличивая скорость вращения вентилятора. Настройка чувствительности регулятора осуществляется подстроечным резистором Р3.

В данной схеме регулируемого блока питания имеется возможность подключения разных моделей вольтметров и амперметров, стрелочных и электронных. С аналоговой классикой обозначенной на схеме буквами V вольтметр и A амперметр все понятно подключаем согласно схеме. Амперметр лучше покупать со встроенным шунтом, так гораздо компактней и дешевле. Класс точности вольтметра и амперметра с Али Экспресс должен быть 2.5 эти приборы работают нормально. А вот с китайскими электронными придется повозиться. На данный момент существует две модели китайских универсальных измерительных приборов (КУИП). Первая модель с синим проводом со встроенным шунтом более точная менее глючная, в последнее время её трудно найти на Али Экспресс. Вторая модель с желтым проводом и встроенным шунтом не точная и очень глючная с прыгающими показаниями амперметра от 0 до 0.25А на холостом ходу без нагрузки. Не понятно зачем её вообще продают? Если вы будете ставить электронный КУИП, тогда надо разорвать участок электрической цепи отмеченный на схеме красным крестиком. По другому в данной схеме электронный КУИП работать правильно не будет .

А эта схема для тех, кто любит мощные блоки питания. Как и обещал до 25А.

Схема блока питания с регулировкой напряжения и тока 1.2…30В 25А

В схему добавлен дополнительный мощный транзистор Т2 TIP35C способный выдерживать ток до 25А и резистор R3 200 Ом. Диодный мост заменен на более мощный. Транзистор IRFP250 выдерживает 30А, а транзистор IRFP260 49А. Так же с увеличением силы тока в схему добавлено ещё четыре керамических резистора. Всего надо соединить параллельно и установить восемь керамических резисторов 1 Ом 10Вт. Остальные элементы остались без изменений.

На этом рисунке изображена печатная плата блока питания с регулировкой напряжения и тока на 10А.

Печатная плата блока питания с регулировкой напряжения и тока 1.2…30В 10А

На этом рисунке изображена печатная плата блока питания с регулировкой напряжения и тока на 25А.

Печатная плата блока питания с регулировкой напряжения и тока 1.2…30В 25А

А это печатная плата блока резисторов. Для схемы на 10А нужна одна плата, а вот для схемы на 25А надо изготовить две таких платы и соединить между собой параллельно. Все резисторы на платах тоже соединены параллельно.

Печатная плата блока резисторов

Стабилизатор напряжения LM317, транзисторы TIP35C, IRFP250, 260 устанавливаем на радиатор через изолирующие термопрокладки и термошайбы. Транзистор MJE13009 устанавливаем на радиатор без изоляции, иначе от сильного нагрева и плохого отвода тепла через термопрокладку будет перегреваться и выходить из строя. Стабилизатор напряжения L7812CV и транзистор BD139 устанавливаем на разные радиаторы. Терморезистор вставляем в просверленное в радиаторе отверстие и закрепляем с помощью Поксипола или Эпоксидной смолы. В процессе установки терморезистора проверяйте мультиметром отсутствие электрического контакта, между терморезистором и радиатором. Переменные резисторы, а также светодиоды при необходимости можно соединить проводами и вынести за пределы платы.

Блок резисторов соединяется проводами с основной платой. Готовый блок питания начинает работать сразу после подачи питания на плату. Единственное что надо настроить, так это скорость вращения вентилятора. Для этого надо при холодном радиаторе с помощью подстроечного резистора Р3 выставить напряжение на вентиляторе примерно 1 вольт. Вентилятор начнет вращаться при температуре радиатора примерно 45 градусов, обороты будут подниматься прямо пропорционально температуре радиатора. При охлаждении радиатора обороты вентилятора будут снижаться. Так работает автоматический регулятор оборотов вентилятора.

Как же пользоваться блоком питания?
Очень просто. Включаем питание и выставляем регулируемым резистором Р1 нужное вам напряжение. Ручку регулируемого резистора Р2 ставим в крайнее правое положение соответствующее максимальной силе тока. Подключаем нагрузку к блоку питания, при необходимости добавляем напряжение. Если надо резистором Р2 можно ограничить ток.

Как заряжать аккумулятор?
Легко! При подключении аккумулятора блок питания должен быть выключен из сети. Ставим ручки резисторов Р1 и Р2 в крайнее левое положение, минимальное напряжение и минимальный ток. Подключаем аккумулятор к блоку питания. Должен загореться зеленый светодиод, это означает что аккумулятор подключен правильно. В случае ошибки подключения загорится красный светодиод. После того, как вы убедились в правильности подключения аккумулятора, включите блок питания в сеть. Переменным резистором Р1 установите напряжение 14.5В. Далее резистором Р2 установите силу тока равную 10% от емкости аккумулятора, то есть для 60А/ч батареи начальный ток должен быть не более 6А.

После установки силы тока произойдет падение напряжения примерно до 13В. По мере заряда аккумулятора напряжение будет постепенно подниматься до 14.5В, а сила тока будет снижаться до 0.1А это будет означать, что батарея полностью заряжена.

Что будет с блоком питания в случае короткого замыкания?
Ничего страшного не произойдет. В случае короткого замыкания сработает защита ограничения тока. Согласно закону Ома: чем больше сопротивление цепи, тем меньше сила тока будет в нем. Следовательно при коротком замыкании будет максимально возможный ток. Напряжение упадет, а сила тока будет той, которую вы ограничили резистором Р2.

Радиодетали для сборки блока питания с регулировкой напряжения и тока на 10А

  • Диодный мост KBPC2510, KBPC3510, KBPC5010
  • Конденсатор С1 4700mf 50V
  • Регулируемый стабилизатор напряжения LM317
  • Транзисторы Т1 MJE13009, T2 IRFP250, IRFP260, T3 КТ815, BD139
  • Переменные резисторы Р1 5К, Р2 1К, Р3 10К
  • Стабилитрон 12V 5W 1N5349BRLG
  • Резисторы R1, R2 200R 0.25W, R3 1K 5W, R4 100R 0.25W, R5 47R 0.25W, R6 1R 10W параллельно 4шт, R7 3K 0.25W
  • Терморезистор R8 B57164-K 103-J сопротивление 10К
  • Светодиоды 5мм красный и зеленый, напряжение питания 3В
  • Радиатор 100х63х33 мм 1шт, радиатор KG-487-17 (HS 077-30) 2шт
  • Вентилятор 70х70 мм

Радиодетали для сборки блока питания с регулировкой напряжения и тока на 25А

  • Диодный мост KBPC2510, KBPC3510, KBPC5010
  • Конденсатор С1 4700mf 50V
  • Регулируемый стабилизатор напряжения LM317
  • Транзисторы Т1 MJE13009, T2 TIP35C, T3 IRFP250, IRFP260, T4 КТ815, BD139
  • Переменные резисторы Р1 5К, Р2 1К, Р3 10К
  • Стабилитрон 12V 5W 1N5349BRLG
  • Резисторы R1, R2, R3 200R 0.25W, R4 1K 5W, R5 100R 0.25W, R6 47R 0.25W, R7 1R 10W параллельно 8шт, R8 3K 0.25W
  • Терморезистор R9 B57164-K 103-J сопротивление 10К
  • Светодиоды 5мм красный и зеленый, напряжение питания 3В
  • Радиатор 100х63х33 мм 1шт, радиатор KG-487-17 (HS 077-30) 2шт
  • Вентилятор 70х70 мм

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как сделать блок питания с регулировкой напряжения и тока

Простой регулируемый блок питания 0-30в

Всем давно известно, что без нормального регулируемого блока питания не возможно запустить ни один девайс сделанный своими руками. Ведь блок питания это основа радиолюбительской лаборатории, поэтому в этой статье я расскажу, как сделать простой регулируемый блок питания из доступных деталей всего на двух транзисторах. На этом рисунке изображена простая для изготовления схема регулируемого блока питания.

Схема регулируемого блока питания на транзисторах

Эта схема очень неприхотлива в радиодеталях по этому, собрать её может каждый начинающий радиолюбитель практически из того, что имеется под рукой. Диодный мост Br1 пойдет практически любой с силой тока не менее 3А. Если нет диодного моста, замените его подходящими диодами. Конденсатор С1 можно заменить любым от 1000 мкФ до 10 000 мкФ. Переменный резистор Р1 от 5 до 10 кОм. Транзистор Т1 КТ815, BD137, BD139 транзистор Т2 КТ805, КТ819, TIP41, MJE13009 и многие другие советские и импортные аналоги, подбираются согласно требуемой нагрузке и мощности источника питания.

Диод D1 с силой тока не менее 3А, можно вообще заменить перемычкой, он защищает конденсатор C2 от переполюсовки при подключении к блоку питания аккумулятора. Источником питания для этой схемы может служить любой трансформатор от 12 до 30 вольт. Для своего блока питания я использовал тороидальный трансформатор от музыкального центра с двумя последовательно соединенными обмотками по 13,5В и силой тока 3,5А. После выпрямления напряжения на выходе получилось 30 вольт.

Все детали блока питания я, как всегда разместил на печатной плате размером 6,5 на 4,5 см. При установке транзисторов обратите внимание на цоколевку. Например у транзистора КТ819 ножки располагаются так ECB, а у транзистора MJE13009 так BCE, по этому транзисторы лучше всего соединить с платой небольшими кусочками провода и тогда у вас не возникнет проблем с правильной установкой транзисторов на радиаторе.

Печатная плата регулируемого блока питания 0-30В

Два транзистора установите на одном радиаторе без изоляционных прокладок потому, что коллекторы транзисторов на схеме соединяются вместе. Не забудьте места крепления транзисторов смазать термопастой. Диодную сборку желательно закрепить на небольшом радиаторе, она тоже не слабо нагревается. Для контроля выходных характеристик желательно установить универсальный китайский измерительный прибор (УКИП) обозначенный на схеме V/A1.

Все компоненты блока питания я разместил в стандартном корпусе от компьютерного блока питания. Только из за большого размера тороидального трансформатора от музыкального центра вентилятор пришлось разместить снаружи, но это на технические характеристики блока питания особо не влияет.

Благодаря мощному 3,5 амперному тороидальному трансформатору этот универсальный регулируемый блок питания я использую для питания различных самоделок и в качестве зарядного устройства для небольших аккумуляторов.

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том как работает регулируемый блок питания.

Блок питания с регулировкой напряжения (Очень любительский)

Испытываете ли вы нужду в регулируемом источнике питания? Уверены?

Данный прибор будет непременно полезен тем, кто что то делает своими руками в области электроники. Можно произвести тестовую запитку устройства перед намоткой соответствующего трансформатора, узнать поведение устройства при разряде батарей.

Интересно? Читаем дальше.

Для создания такого устройства я взял компьютерный блок питания AT. Главным критерием выбора является наличие микросхемы широтно-импульсной модуляции tl494. Будьте внимательны! Возможно у вас аналог tl949, тогда всё в порядке. Если у вас блок собран вокруг другой микросхемы, например lm324, данная статья вам не поможет.

Разборка корпуса блока питания происходит путём отвинчивания двух шурупов с верхней части корпуса. Снимаем крышку. Ищем tl949. Нашли? Идём дальше.

Переделка моим способом (способом, который я использовал сам и предлагаю вам) минимальна. Первая нога микросхемы соединена с землёй и выходами питания. Иногда только с +12, иногда только с +5. У меня с обоими. Соединена она не на прямую, а через резистор.

Что сделал я. На половину уменьшил номинал резистора, идущего на землю от первой ноги микросхемы. Выпаял резисторы между первой ногой и +5 и +12. Между первой ногой микросхемы и шиной +12 поставил подстрочный (переменный резистор) на 100 КОм. Можно поставить на 47КОм Между шиной +5 и первой ногой микросхемы. Ск ажу заранее, чтобы лишний раз не перепаивать, при увеличении сопротивления переменного резистора возрастает напряжение. Для меня удобнее сделать так, чтобы напряжение увеличивалось при повороте ручки по часовой стрелке, чем против.

Должно получиться так:

Давайте проверим работоспособность! Если ваш БП стандарта АТХ, то замыкаем зелёный провод на землю(чёрный провод) и БП запущен. Если у вас БП стандарта АТ, то нужно создать нагрузку. Можно повесить вентилятор, имеющийся в блоке питания, можно подключить лампочку автомобильную, мощный резистор. Ориентироваться нужно на то, чтобы создать ток 0.5а по шине +5. Несложными рассчётами можно определить, что нам потребуется сопротивление 10 (Ом) а мощность резистора будет 2.5 ватта. Для подстраховки давайте возьмём 3 ватта. если у вас нет мощных резисторов, то можно спаять несколько штук маломощных в параллель, их мощность (при равных сопротивлениях) будет равна сумме мощностей всех резисторов. Я же, взял керамический предохранитель из «пробок» старого типа, разорвал проволоку на нём, намотал на него спиралью проволоку из вольфрама. Уместить достаточную длину на одном предохранителе мне не удалось, я использовал 3, затем соединил их последовательно. Подключаем нашу нагрузку между землёй (чёрный провод) и +5 в (красный провод), вольтметр выставляем на 20в и подсоединяем параллельно нагрузке. Устанавливаем наименьшее сопротивление переменного резистора, накрываем крышкой блок питания. Отключаем все чувствительные электроприборы от эл.сети в рамках безопасности. Включаем в сеть наш блок питания, находясь как можно дальше от самого блока питания. Помните, . ВЫ РАБОТАЕТЕ С ВЫСОКИМ НАПРЯЖЕНИЕМ.

Смотрим на напряжение. У меня минимум получился 2.6 вольта. Крайне осторожно поднимаем напряжение поворотом ручки переменного резистора. Следим, чтобы не превысить 8 вольт по шине +5. При превышении этого порога на шине +12 будет больше 16 вольт. Прекрасно? Пока это не так. Фильтрующие конденсаторы на шине +12 рассчитаны на 16в. При превышении будет взрыв. Я, как человек, которому наплевать на жизнь, превысил напряжение. Был взрыв конденсатора: гора дыма, искры, громкий хлопок, капли жидкости из конденсатора. Не повторяйте этого!

Но как же нам повысить напряжение до максимально без взрывов? Для этого можно использовать два конденсатора на 16в соединённых последовательно + к -. Их ёмкость при этом будет высчитываться так же, как и сопротивление параллельно соединённых резисторов. Лучше всего пойти на радиорынок, заглянуть в радиолавку и купить конденсатор рассчитанный на 30в. Ёмкость его должна быть выше 1000 мкФ. У меня сейчас стоит на 3300мкФ 35в. Обратите внимание, что регулироваться напряжение будет на всех имеющихся шинах. +5, +12, +3.3 (на ат таковой нет), -5, -12. Просматриваем все конденсаторы по этим шинам. На шине 5в ставим по 16в и ёмкость от 500мкФ (чем выше, тем стабильнее) а на 12 ставим 30в. Как только мы заменили конденсаторы мы просто обязаны проверить максимальное напряжение, которое мы можем выжать. Проверяем. Сколько у вас? У меня +25 по шине 12в и 12 по шине 5в. На отрицательных плечах напряжение такое же, только с отрицательным знаком. Выпаиваем все провода с выходом питания. Ленивым и расточительным разрешается оставить по 2 провода на каждую жилу, остальное выпаять и обрезать от штекеров. Покупаем в магазине электрики клеменную колодку и вжимаем в неё провода с одной стороны. Затем выводим её наружу через вентиляционные дырки, крепим. Располагаем напряжения по логике. Моя логика. это -12, -5, 0, +5, +12 слева направо. В дырку, через которую раньше выходили провода, устанавливаем переменный резистор. Ну просто красота!

Откуда же у меня 7 клейм?! Я взял две земли и два выхода +5. К ним удобно подключать мультиметр на долгое время.

Подключаем вентилятор между контактами +5 и +12. Этим мы добъёмся регуляции оборотов в зависимости от напряжения блока питания. Максимальное напряжения 25-12.5=12.5. Всё прекрасно. Если у вас ATX блок питания и имеется выход +3.3 вольта, то рекомендую вентилятор подключить между +3.3 и +12. Вентиляторы данного типа спокойно держат 16в. разворачиваем вентилятор так, чтобы он дул вовнутрь корпуса, а не наружу. Изолируем землю от корпуса блока питания. Это я рекомендую сделать потому, что если вы коснётесь случайно проводом под напряжением корпуса ничего не случится, в отличии о искр при заземлении корпуса. Наш блок питания не имеет регулировки по току, однако почитав умных статей в интернете вы, думаю, сможете сделать себе таковой. Наш БП имеет защиту от КЗ. Замкните любые провода с разными потенциалами и бп просто отключится. Нужно именно замкнуть а не коротнуть с искрой.

Прокладка из бумаги.

Кабель питания можно использовать стандартный, но мне это показалось слишком расточительным, потому что внутри бп провода питания идут уже тонкие. Я использовал шнур от старого магнитофона.

Ранее, я указал, что максимальное напряжение это 25в. Но ведь между -25 и 25 напряжение будет 50в! Так и есть, однако допустимый ток по отрицательным каналам очень мал, порядка 500 мА. Если у вас есть приборы, работающие от такого напряжения и потребляющие так мало тока, то конечно, используйте эту возможность. Регулировку напряжение я советую производить плавно, не рывками.

После всего можно сделать «лицо нашему прибору». Тут уже проявляйте своё творчество как хотите. Рекомендую печатать на глянцевой бумаге формата А6 и клеить на супер клей. Мой вариант не оконченный, т.к принтер уже пол года не печатает цветом, а идти к другу попа не хочет)

Читайте также: